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Simple Summary: It has been widely acknowledged in farm animals that environmental heat stress
would have comprehensive influences on many kinds of physiological aspects, including the metabolic
characteristics, production performances, welfare concerns, etc. The rabbit is a small herbivore
and needs to regulate the body temperature in a fine mechanism. Little is known, however, about
the genes and pathways that are involved in the regulatory responses under chronic heat stress
conditions. In the present study, we investigated the liver transcriptome changes in response to
chronic heat stress for Hyla rabbit, that is a commercial meat breed recently introduced into China.
We successfully revealed the differentially expressed genes that were significantly enriched in heat
stress related biological processes. The results would help us for better understanding the molecular
mechanisms underlying physiological responses against heat stress in rabbits.

Abstract: Rabbit is an economically important farm animal in China and also is a widely used animal
model in biological researches. Rabbits are very sensitive to the environmental conditions, therefore
we investigated the liver transcriptome changes in response to chronic heat stress in the present study.
Six Hyla rabbits were randomly divided into two groups: chronic heat stress (HS) and controls without
heat stress (CN). Six RNA-Seq libraries totally yielded 380 million clean reads after the quality filtering.
Approximately 85.07% of reads were mapped to the reference genome. After assembling transcripts
and quantifying gene expression levels, we detected 51 differentially expressed genes (DEGs) between
HS and CN groups with thresholds of the adjusted p-value < 0.05 and |log2(FoldChange)| > 1.
Among them, 33 and 18 genes were upregulated and downregulated, respectively. Gene ontology
analyses further revealed that these DEGs were mainly associated with metabolism of lipids, thyroid
hormone metabolic process, and cellular modified amino acid catabolic process. The upregulated
ACACB, ACLY, LSS, and CYP7A1 genes were found to be inter-related through biological processes
of thioester biosynthetic process, acyl-CoA biosynthetic process, acetyl-CoA metabolic process,
and others. Six DEGs were further validated by quantitative real-time PCR analysis. The results
revealed the candidate genes and biological processes that will potentially be considered as important
regulatory factors involved in the heat stress response in rabbits.
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1. Introduction

Global warming has become a serious environmental factor for humans and livestock. Heat stress
due to global warming results in a variety of animal production parameters, impaired metabolism,
and even death in extreme cases. Environmental heat stress negatively impacts animals, resulting in
significant welfare concerns and economic losses in livestock industries. Long-term high temperatures
and excessively warm weather generate serious heat stress for animals, which can cause inflammatory
response [1], improve immune status, and alter hepatic gene expression [2] in the dairy cow. Study on
broiler liver transcriptome reveals that treatment with cyclic high ambient temperature caused
metabolic, physiologic, and cellular-level changes [3]. Effects of heat stress on rabbits have been widely
documented to include collapse inefficient thermoregulatory mechanism, compromised the immune
system, and decline in the antioxidant defense system [4].

RNA-Seq has been widely used in recent studies to investigate differentially expressed genes
(DEGs) related to heat stress. For example, Jastrebski et al. [5] found genes related to cell cycle regulation,
DNA replication, and DNA repair along with immune function were changes when chicken under
chronic heat stress condition. Kim et al. [6] found PIK3R6, PIK3R5, and PIK3C2B have an important
relationship with the mechanisms of adaptation to heat stress in ducks. Using transcriptome analysis
of liver tissue, Li et al. [7] found the pathways of carbon metabolism, the PPAR signaling pathway,
and vitamin digestion and absorption are heat stress related and, APOA4 and APOA5 might function
synergistically to regulate the anti-heat stress ability in Hu sheep. Similarly, Lu et al. [8] found DEGs
under heat stress condition were significantly associated with biological processes such as response to
stress, immunoreaction, and fat metabolism.

Despite the above-mentioned publications, studies investigating DEGs and pathways related
to heat stress in rabbit are rare. Rabbits have several unique metabolic features that are similar
to humans, so they provide a unique system and are widely used for the study of liver function,
gene-targeting and translational research [9]. The liver plays a vital role in the maintenance of body
homeostasis and is essential for the coordination of normal metabolism of carbohydrates, lipids,
proteins, and vitamins, as well as for biochemical defense against toxic chemicals [10]. Moreover,
the liver is more susceptible to oxidative stress than other organs under heat stress and, thus, was an ideal
candidate tissue to study the impact of that stress on organismal energy transformation, hormone
metabolism and immune response. However, the molecular underpinnings of gene regulation to heat
stress are poorly understood on liver transcriptome. Our results provide insights into the molecular
mechanisms associated with the liver’s response to chronic heat stress. The comprehensive examination
of the genes and regulatory pathways related to rabbit chronic heat stress response will assist in
the ultimate goal of breeding practices that will help to deal with high ambient temperatures.

2. Materials and Methods

2.1. Ethical Statements

This study was carried out at the experimental farm of Sichuan Agricultural University in Ya’an,
China, from September to October 2018. All procedures involved in the present study were approved
by Institutional Animal Care and Use Committee of Sichuan Agricultural University (DKY-B20171906).

2.2. Experiment Design and Sample Collection

The study was conducted in Hyla rabbits. After weaning at 30 days of age, animals were routinely
fed the commercial pelleted food, for which ingredients and chemical composition are shown in
Table S1. At the 70 days of age, six healthy and comparative female Hyla rabbits were randomly
recruited with body weight of 2079.2 ± 29.6 g. All animals had been maintained in an air-conditioned
room for a pretreatment period of one week at ~21.5 ◦C. After which, all rabbits were individually
housed in stainless steel cages where diet and water were offered ad libitum, and randomly divided
into two groups (N = 3 for each group). During the entire experimental period, ambient temperatures
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and relative humidity were daily recorded at 08:00, 12:00, and 18:00, respectively. The ambient
temperature and humidity were measured by a temperature-humidity detector (Elitech, Beijing, China).
The control group (CN) was housed in an air-conditioned room with a temperature-humidity index
(THI) of 24.13 ± 1.70 and treated as the absence of heat stress. The treatment group (HS) were similarly
housed in an air-conditioned room with a THI of 29.89 ± 0.96, which is higher than the recommended
threshold (27.8) of THI index under heat stress condition [11]. The formula of THI index is:

THI = t − [(0.31 − 0.31 RH)(t − 14.4)] (1)

where RH = relative humidity/100 and t = ambient temperature.
During the pretreatment and experimental periods, the clinical signs of respiration rate, heart rate,

and rectal temperature of all animals were recorded for evaluating the degree of response to heat stress.
Data among groups were statistically analyzed with a one-way ANOVA test of the SPSS v11.0 software.
The significant differences among means were compared using Duncan’s multiple-range test. All data
are expressed as least squares means ± standard errors (mean ± SE). All of these individuals were
stunned by electro-anesthesia and sacrificed by jugulation at the end of experimental period, the tissue
used is the left lobe of liver and selected within a relatively homogenous portion of which was free of
vasculature, and then immediately frozen in −80 ◦C for RNA-seq analysis.

2.3. RNA Extraction, cDNA Library Construction and Sequencing

Total RNA was isolated from the six liver samples using TRIzol Reagent (TaKaRa, Dalian, China),
according to the standard protocol, for which the DNA was cleaned out using DNaseI. RNA concentration,
purity, and integrity were measured using the NanoPhotometer® spectrophotometer (IMPLEN,
Westlake Village, CA, USA) followed by RNA Nano 6000 Assay Kit on the Bioanalyzer 2100 system
(Agilent Technologies, Palo Alto, CA, USA). RNA quality was verified by ensuring all RNA samples had
an absorbance (A260/280) of between 1.8 and 2, and RNA integrity number of between 7.5 and 10 were
deemed to be of sufficiently high quality.

Sequencing libraries were generated using the NEBNext® UltraTM RNA Library Prep Kit for
Illumina® (NEB, Beverly, MA, USA) following manufacturer’s recommendations. Briefly, mRNA was
purified from total RNA using poly-T oligo-attached magnetic beads and fragmented by an Illumina
proprietary fragmentation buffer with an elevated temperature. Random hexamer primer and M-MuLV
Reverse Transcriptase (RNase H−) were used to synthesizes first strand cDNA. Second stand
cDNA synthesis was subsequently performed using DNA polymerase I and RNase H. End repair,
A-tailing, adaptor ligation, and cDNA purification and enrichment were then performed. Sequencing
was performed using an Illumina HiSeq 2500 platform and 150 bp paired-end reads were generated.

2.4. Quality Control and Mapping of Reads

The raw reads were generated from Illumina sequencing machine in FASTQ format [12]. All of
them were subjected to quality control to remove adaptor sequences and low-quality reads. In this
step, The Phred score Q20, Q30, and GC content of the raw reads were calculated. After removing
these reads containing adaptors, >10% of ambiguous ‘N’ bases and with low quality (>50% of bases
with Phred scores ≤ 20), the remaining clean reads for each sample were aligned to rabbit reference
genome (OryCun2.0.75 in Ensembl) using HISAT2 v2.0.5 software [13].

2.5. Analysis of Differentially Expressed Genes

We used featureCounts v1.5.0-p3 [14] to count the number of mapped reads to each gene,
which were normalized for the gene length and library size. And the gene expression was calculated
in fragments per kilo-base of exon per million mapped fragments (FPKM). Which considers the effect
of sequencing depth and gene length for the reads count, is used for estimating gene expression
levels. Pearson’s correlation coefficients (R2) of 2 individuals in the same group were checked on
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the basis of the FPKM value of each sample to reflect the accuracy and reliability of the results;
the closer R2 is to 1, the higher the similarity of the expression pattern between samples. Generally,
R2 > 0.8 was considered suitable. For exploring gene expression profile in each sample, all the genes
were categorized into five groups based on their FPKM values: very low expression gene (0–1), low
expression gene (1–3), medium expression gene (3–15), high expression gene (15–60), and extremely
high expression gene (>60).

The DEGs were analyzed using DESeq2 v1.16.1 software [15] between HS and CN groups.
In which, the DEGs were selected by thresholds of |log2(FoldChange)| > 1 and pad < 0.05. Clustering
analysis of the detected DEGs was subsequently carried out using the heatmaps in R software package.

2.6. Functional Enrichment Analysis

Gene ontology (GO) is an international standard gene functional classification system that
describes three ontologies: molecular function, cellular component, and biological process. To evaluate
the relevance of DEGs, and effects on signaling pathways at chronic heat stress, we performed GO
analysis for biological processes with clusterProfiler R package as described with Yu et al. [16] with
a Benjamini-Hochberg adjusted p-value of <0.05.

ClueGO integrates GO terms as well as KEGG/BioCarta pathways and creates a functionally
organized GO/pathway term network, which can compare clusters of genes and visualizes their
functional differences. The ClueGO plug-in v3.7.2 of Cytoscape was used to visualize non-redundant
biological terms for genes in functionally grouped networks [17].

2.7. Validation of RNA-Seq Data by qPCR

To confirm the repeatability and reproducibility of DEGs obtained from RNA-Seq, 6 DEGs were
chosen randomly for qPCR validation. The primers for the qPCR were designed using Primer Premier
5.0 software based on consensus cDNA sequence of each gene downloaded from the NCBI database,
and the primer sequences are listed in Table S2. The liver tissues were used for RNA extraction by
RNAiso Pure RNA Isolation Kit (TaKaRa, Dalian, China). Single stranded cDNA was synthesized
from 1.5 µg of RNA using a PrimeScript RT reagent kit (TaKaRa, Dalian, China). qPCR was performed
on Bio-Rad CFX96 real-time PCR detection system (Bio-Rad, Inc., Hercules, CA, USA). PCR reaction was
done in a final volume of 10µL/well including 5µL SYBR Green Super Mix (Bio-Rad, Hercules, CA, USA),
1 µL template cDNA, 0.4 µL of each primer (10 pmol/µL), and 3.2 µL of double-distilled water.
Reaction condition is 95 ◦C for 3 min, 40 cycles of 95 ◦C for 5 s, and 30 s at the Tm, subsequently
95.0 ◦C for 10 s, then Melt Curve from 65 ◦C to 95 ◦C per increment 0.2 ◦C for 10 s to read plate.
The standard curves were diluted 10-fold gradient from 10−3 to 10−9 to ensure the amplification
efficiency in 100% ± 5%. The 6 samples were run in triplicate for the six genes; each run contains
a non-template control. In relative quantify the expression of the DEGs, the qPCR data is presented
relative to GAPDH referred to as an internal control, and the method of 2−∆∆CT was enrolled to calculate
which using quantification cycle values as described by Livak and Schmittgen [18].

3. Results

3.1. Influence of Chronic Heat Stress on Physiological Characteristics

Respiration rate, heart rate, and rectal temperature are shown in Table 1. At pretreatment, there
were no significant differences in the changes of rabbit respiration rate, heart rate, and rectal temperature
among the HS and CN groups. On the other hand, no significant difference parameters were found
in the animals of CN group from pretreatment period to experiment period. Which exhibited that
CN animals were absence of heat stress during the entire experimental period. After the heat stress
treatment, heart rate in the HS group (245 ± 35) was significantly higher than in the CN group (213 ± 29),
Similarly, rectal temperature, was also significantly (p < 0.01) elevated in the HS group compared with
the CN group.
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Table 1. Physiological characteristics of animals.

Item
Pretreatment Treatment

HS CN HS CN

respiration rate (/min) 120 ± 11 126 ± 17 126 ± 14 124 ± 17
heart rate (/min) 210 ± 27 B 223 ± 30 AB 245 ± 35 A 213 ± 29 B

rectal temperature (◦C) 39.5 ± 0.3 B 39.6 ± 0.2 B 40.6 ± 0.4 A 39.5 ± 0.3 B

In the same row, A,B letters mean significant difference at 0.01 levels.

3.2. Sequencing and Mapping of Reads

A total of 387,409,896 raw reads were generated from livers of all the six rabbits. After filtering
adaptor sequences and low quality reads, the number of clean reads were 379,542,170. The GC content
of these six samples were about 55%. All Q20 values of the read sequences in the samples exceeded
95.95%, and Q30 exceeded 90.05%. The results of mapping showed that more than 83.65% of the reads
(total mapped reads) matched the reference genome and the remaining were unmatched. Of these,
more than 80.66% of the reads were matched to a unique genomic location and less than 3.54% of
the reads were matched to multiple genomic locations (Table 2). The reads of unique mapped on
the rabbit reference genome were used for further bioinformatic analysis.

Table 2. Mapping results of the transcriptome data.

Items HS1 HS2 HS3 CN1 CN2 CN3

Raw reads 64,568,316 64,568,316 64,568,316 64,568,316 64,568,316 64,568,316

Clean reads 63,191,812 63,262,266 63,292,936 63,065,116 63,170,720 63,559,320

Clean bases 9.48G 9.49G 9.49G 9.46G 9.48G 9.53G

Error rate 0.03% 0.03% 0.03% 0.03% 0.03% 0.03%

Q20 96.50% 95.95% 96.52% 96.38% 97.38% 97.70%

Q30 91.13% 90.05% 91.09% 90.82% 92.87% 93.58%

GC content 55.51% 55.76% 54.95% 55.30% 55.83% 55.52%

Total map 53,694,163
(84.97%)

52,919,164
(83.65%)

54,192,938
(85.62%)

53,806,908
(85.32%)

53,743,538
(85.08%)

54,514,687
(85.77%)

Unique map 51,618,791
(81.69%)

51,024,408
(80.66%)

51,954,752
(82.09%)

51,853,433
(82.22%)

51,701,154
(81.84%)

52,454,172
(82.53%)

Multi map 2,075,372
(3.28%)

1,894,756
(3.0%)

2,238,186
(3.54%)

1,953,475
(3.1%)

2,042,384
(3.23%)

2,060,515
(3.24%)

Proper map 48,422,878
(76.63%)

47,632,360
(75.29%)

48,881,796
(77.23%)

48,638,926
(77.12%)

48,810,104
(77.27%)

49,723,966
(78.23%)

HS1, HS2, and HS3 were animals in the HS (chronic heat stress) group and CN1, CN2, and CN3 were animals in
the CN (controls without heat stress) group.

3.3. Analysis of Gene Expression

We estimated the expression levels of mRNAs through FPKM values. The value of Pearson’s
correlation coefficients (R2) was 0.960–0.974 among HS1, HS2, and HS3, and 0.946–0.967 among CN1,
CN2, and CN3 (Figure S1), which confirmed the sufficiently high similarity between the 3 biological
replicates of the two rabbit groups. As shown in Table 3, the overall gene expression levels of the six
samples were similar, but small percentage changes of various expression quantities among them.
Most gene expressed either very low level or medium level, approximately, 29% of genes had FPKM
values of less than 1, and 31% had FPKM values in the range of 3–15. Only approximately 8% had
FPKM values of more than 60 (Table 3).
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Table 3. Number of genes at different expression levels.

FPKM Interval HS1 HS2 HS3 CN1 CN2 CN3

0–1 4319
(28.65%)

4315
(28.56%)

4373
(28.79%)

4349
(29.08%)

4497
(29.08%)

4582
(29.47%)

1–3 2379
(15.78%)

2413
(15.97%)

2399
(15.79%)

2315
(15.48%)

2426
(15.69%)

2397
(15.42%)

3–15 4657
(30.89%)

4635
(30.68%)

4748
(31.26%)

4523
(30.24%)

4829
(31.23%)

4916
(31.62%)

15–60 2448
(16.24%)

2492
(16.49%)

2411
(15.87%)

2468
(16.50%)

2545
(16.46%)

2542
(16.35%)

>60 1272 (8.44%) 1254 (8.30%) 1259 (8.29%) 1300 (8.69%) 1167 (7.55%) 1110 (7.14%)
Total 15,075 15,109 15,190 14,955 15,464 15,547

FPKM means fragments per kilobase of transcriptome per million mapped reads, indicating the gene expression level.

We compared animals from HS and CN group for differences in gene expression using DESeq2 R
package (1.16.1). A total of 51 genes fulfilling both criteria of pad < 0.05 and |log2(FoldChange)| > 1,
among them, 33 presented upregulated expression in the rabbit of HS group, while 18 presented
downregulated (Table S3, Figure 1A). Hierarchical clustering of the DEGs based on condition (HS vs. CN)
was conducted to get a deeper understanding of the gene expression patterns. The results exhibited
that the DEGs of rabbit in the HS and CN were clustered into a single class (Figure 1B).
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Figure 1. Hyla rabbit genes identified to be differentially expressed between chronic heat stress (HS)
and controls without heat stress (CN) animals. (A) Volcanic plot of the differentially expressed genes.
(B) Heat map of the differentially expressed gene cluster analysis.

We detected 6 DEGs using qPCR to verify our RNA-Seq analysis. The expression levels of
these genes were analyzed between control and heat stressed samples. The results showed that
the tendency of gene expression was concordant with the RNA-Seq result, though the absolute fold
changes differed between qPCR and RNA-Seq (Figure 2), thus suggesting the transcriptome sequencing
results were reliable.
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3.4. Functional Categories of DEGs

Of the 51 DEGs identified between HS and CN rabbits, we found 34 GO terms with
pad < 0.05 (Table S4), most of which were associated with a biological process, including metabolism
of lipids, thyroid hormone metabolic process, cellular modified amino acid catabolic process,
and acetyl-CoA metabolic process (Figure 3). Maximum number of DEGs was enriched for regulation
of lipid biosynthetic process, steroid biosynthetic process, and anion transmembrane transport.
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Figure 3. Gene Ontology (GO) analysis enriched by the differentially expressed genes.

Using the ClueGO plug-in, the differentially expressed ACACB, ACLY, LSS, and CYP7A1
genes were found to be inter-related through biological process of thioester biosynthetic process,
acyl-CoA biosynthetic process, acetyl-CoA metabolic process, and other lipid biosynthetic related
processes (Figure 4). Interestingly, all of these genes were up-regulated in the HS group.
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4. Discussion

Heat stress could lead to enormous economic loss in rabbit industry by decreasing feed intake
and increasing mortality rate [19,20]. Transcriptome studies have been widely used to explore the underlying
molecular basis of heat resistance in animals, such as the cow [2], sheep [8], chicken [3], and duck [6].
In the current study, we artificially induced heat stress condition in rabbit, by which the global gene
expression profiles have been studied. Our results revealed the important candidate genes and pathways
in relation with heat stress in rabbit.

The accumulating evidence indicated heat stress has a severe effect on the health of animals and cause
endocrine changes such as in measurable levels of circulating cytokines and corticosteroids [21], and gene
expression including specific and highly regulated signaling cascades leading to the transcriptional
regulation of endogenous antioxidant enzymes [22]. Through transcriptomic analysis of broilers under
high ambient temperature, Coble et al. [3] found the DEGs were mainly associated with cell signaling
and endocrine system development and function. A study on cows under heat stress found the increased
basal and stimulated insulin levels, which resulting in decreased adipose tissue lipid mobilization
and apparently increased glucose utilization by peripheral tissues [23]. In this study, we found
the associated DEGs were enriched in fatty acid biosynthetic process, acetyl-CoA metabolic process,
and acyl-CoA biosynthetic process, which showed the influence on fat metabolism under heat stress,
and was similar with the result of liver transcriptome analysis in sheep [7]. Furthermore, the differentially
expressed ACACB, ACLY, LSS, and CYP7A1 genes were found to be inter-related through biological
processes of lipid biosynthetic related processes. The acetyl-CoA carboxylase beta (ACACB), converts
acetyl-CoA to malonyl-CoA, which inhibits carnitine palmitoyl-CoA transferase I, the rate-limiting step
in fatty acid uptake and oxidation by mitochondria [24]. ACACB may be involved in the regulation
of fatty acid oxidation and associated with metabolic syndrome and diabetes [25]. ATP citrate lyase
(ACLY), a cytosolic enzyme that catalyzes the generation of acetyl-CoA for both fatty acid and cholesterol
synthesis is involved in do novo lipogenesis pathway [26]. And heat stress result in hepatic expression of
key lipogenic proteins and increased ACLY expression in chicken [27]. The lanosterol synthase (LSS) is
a well-known enzyme within the pathway of cholesterol biosynthesis, which catalyzes the reaction of
conversion from 2,3-oxide-squalene to lanosterol [28]. And the cholesterol-7-alpha hydroxylase (CYP7A1),
is the rate-limiting enzyme involved in the biosynthesis of bile acid from cholesterol and participate in
the degradation of cholesterol in the liver [29,30]. CYP7A1 has an important role in cholesterol metabolism,
changes in hepatic CYP7A1 mRNA expression are correlated with serum corticosterone levels [31].
Importantly, all of these genes were up-regulated in heat stressed Hyla rabbit. Therefore, these four
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genes could potentially be considered as important novel regulatory factors involved in the heat stress
response in Hyla rabbit.

Heat stress response is very complex process and induce changes in gene expression transcript profiles,
including those related to fatty acid synthase activity, oxidoreductase activity, and lipid peroxidation [32].
Acute and chronic heat stresses exhibit different responses on production and metabolism. Stress challenges
the homeostatic state of the organism. Thus, the stress response includes complex responses to maintain
a steady state. Study in chicken found acute heat stress cause a stronger response than chronic ones,
and there are more DEGs [33]. Previous studies reported that fatty degeneration with dilation of
sinusoid, and necrosis with heterophils and lymphocytes was observed [34], but did not induce oxidative
damage [33–35] in chronic heat stress, and we found similar results in rabbit liver of the responses involved
biological process of thioester biosynthetic process, acyl-CoA biosynthetic process, acetyl-CoA metabolic
process, and other lipid biosynthetic related processes, and out of oxidative damage related pathways.
The purpose of the responses may be to alleviate the effects of heat stress.

5. Conclusions

Liver transcriptome response to chronic heat stress have been examined using RNA-Seq technology
in Hyla rabbit. A total of 51 DEGs were screened out, which represents the genes involved in
thermoregulation mechanism and acclimation. Furthermore, the upregulated ACACB, ACLY, LSS,
and CYP7A1 genes were found to be inter-related through heat stress related biological processes.
The data obtained represented a resource for further investigations of the function of these four
candidate genes, and our findings revealed these genes and biological processes that will potentially
be considered as important regulatory factors involved in the heat stress response in rabbits.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2615/9/12/1141/s1.
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GO analysis of differentially expressed genes in heat stressed and control rabbit groups.
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